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Abstract. The Wold decomposition of stationary processes is widely applied in time series predic-
tion and provides interesting insights into the structure of stationary stochastic processes. In 1971,

Kallianpur and Mandrekar, using the notion of resolution of identity and unitary operators, presented

the Wold decomposition for weakly stationary stochastic processes with values in infinite dimensional
separable Hilbert spaces. This paper aims to expand the idea of Wold decomposition to Hilbertian

periodically correlated processes, applying the concept of L-closed subspaces.
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1. Introduction

In random processes, prediction is a momentous problem. Based on this issue, pro-
cesses can be categorized as deterministic and non-deterministic, see [4, 14]. Although the
deterministic processes are of great importance as models for cyclic and seasonal behav-
ior, they are not of interest in prediction theory. However, prediction of nondeterministic
time series is challenging in many problems.

Using Wold decomposition, introduced by Wold [19], a stationary process can be
written as the orthonormal sum of a purely nondeterministic process and a deterministic
process. This decomposition is the foundation of time domain approach in time series
analysis, digital signal processing, etc, and has a close affinity to spectral analysis of time
series (see [8, 15]). Moreover, it can be applied to provide the best linear prediction in
terms of moving average parameters and innovation processes [12]).

Stochastic processes with values in infinite dimensional Hilbert spaces attract the at-
tention of researchers through last years. These processes are theoretically the building
blocks of functional data analysis. Kallianpur and Mandrekar [7] have studied the Hilber-
tian weakly stationary stochastic processes and established the Wold decomposition and
moving average representation for such processes, using the notion of resolution of iden-
tity and unitary operators. In 2007, Bosq has presented the Wold decomposition for
Hilbertian processes, applying the idea of L-closed subspaces.

Although stationary processes are applied drastically in various fields, they can not
always be the best model for time series data. Some processes, specially in economics
and signal processing, exhibit nonstationary behavior. Among different models for such
processes, periodically correlated or cyclostationary random processes are studied by var-
ious researchers. These processes, which show some periodic rhythm in the structure,
are introduced by Gladyshev (1961). The prediction problem for periodically correlated
sequences has been addressed by Gladyshev [5] who presented conditions for regularity.
Pourahmadi and Salehi [13] and Miamee and Salehi [10] have studied the Wold decom-
position for real-valued periodically correlated processes. Moreover, Pagano [11] has
discussed the connection between periodically correlated sequences and periodic moving
average models.
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The aim of this paper is to extend the idea of Wold decomposition to H-valued peri-
odically correlated processes. For this purpose, Section 2 provides the required notations
and definitions. Section 3 is devoted to the proof of the main theorem of this paper, which
focuses on Wold decomposition, and in the last section, we will apply this decomposi-
tion to present the moving average representation for H-valued periodically correlated
processes.

2. Preliminaries

Let (Ω,F , P ) be a probability space and L2(Ω,F , P ) be the space of real-valued square
integrable random variables on (Ω,F , P ). Consider H to be a separable real Hilbert space,
which is endowed with the inner product 〈·, ·〉H and the norm ‖·‖H . Also, let B denotes
the Borel field on H. An F/B measurable mapping ξ : Ω → H is called an H-valued

random variable and it is termed strongly second order (HSSO) if E‖ξ‖2H <∞, see [18].
The space of HSSO random variables will be denoted by L2

H(Ω,F , P ).
The mean value of the HSSO random variable ξ, E(ξ), is an element of H and is

defined as the Bochner integral of ξ over Ω (see [1]), that is,

E(ξ) = (B)

∫

Ω

ξdP. (1)

The following properties of the expectation are directly followed by its definition:

i. If ξ1 and ξ2 are H-valued random variables and E(ξ1) and E(ξ2) exist, then
E(ξ1 + ξ2) exists as well and E(ξ1 + ξ2) = E(ξ1) + E(ξ2).

ii. Let ξ be an H-valued random variable and E(ξ) exists. If ` is a continuous linear
operator from H into H, then E(`(ξ)) also exists and E(`(ξ)) = `(E(ξ)).

Additionally, the variance and covariance operators of HSSO random variables are
defined in terms of tensorial products. The tensorial product of x and y ∈ H, which is
a random operator, is denoted by x⊗ y, and is defined as (x⊗ y)h = 〈y, h〉Hx, ∀h ∈ H,
see [16]. Some important relationships, which are simple consequences of the definition
of tensorial product, are as follows:

(x + y)⊗ z = x⊗ z + y ⊗ z, x⊗ (y + z) = x⊗ y + x⊗ z. (2)

`(x⊗ y) = (`x)⊗ y, (x⊗ y)` = x⊗ (`∗y), (3)

where ∗ stands for the adjoint of an operator. The variance and covariance operators for
HSSO random variables ξ and η ∈ H are defined respectively as:

Cξ = E[(ξ− E(ξ))⊗ (ξ− E(ξ))], (4)

Cξ,η = E[(ξ− E(ξ))⊗ (η− E(η))]. (5)

It can easily be proved that the operators Cξ and Cξ,η are nuclear operators [2].
The orthogonality is an important feature of H-valued random variables and is defined

by two different forms. The zero-mean random variables ξ and η are called weakly
orthogonal if E〈ξ,η〉H = 0 and are said to be orthogonal if, for any x, y ∈ H,
E〈ξ, x〉H〈η, y〉H = 0. It can easily be shown that orthogonality, which is equivalent to
Cξ,η = 0, is strictly stronger than weak orthogonality [2]. Further on, the notation ξ⊥η
will denote orthogonality.

Let L = L(H,H) be the space of bounded linear operators from H to H, where the
operatorial norm is denoted by ‖·‖0. The notion of L-closed subspaces (LCS) is defined
as follows [2].

Definition. The space G is called an L-closed subspace of L2
H(Ω,F , P ), if it is a Hilber-

tian subspace of L2
H(Ω,F , P ) and, for ξ ∈ G and ` ∈ L, `(ξ) ∈ G.
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If G contains only zero-mean H-valued random variables, it will be called zero-mean LCS.
For simplicity of notation, let spH(A), A ⊆ H, stand for{∑

i∈J
`i(ai); J is finite, `i ∈ L, ai ∈ A

}
.

It can be proved that for an arbitrary subset F of L2
H(Ω,F , P ), the LCS GF , generated

by F, is the closure of spH(F ) =
{∑k

i=1 `i(ξi); `i ∈ L, ξi ∈ F, k ≥ 1
}
, (see [2, Theorem

1.8] for the proof). Note that, conventionally, for A ⊆ H, sp{A} stands for a space which
is closed under the operation of forming linear combinations of elements in A. Also,
sp{A} denotes the closed linear span of all elements of A in H-topology. Therefore, LCS
is the general form of span closure of a set.

Let πG stand for the orthogonal projection on G. For any arbitrary zero-mean H-
valued random variable, ξ, and zero mean LCS G, it can be shown that πG(ξ) ∈ G
and Cξ−πG(ξ),η = 0, for η ∈ G [2]. However, the H-valued random variables does not
essentially have mean zero. To deal with this situation, let us denote by χc the class of
constant H-valued random variables. It can be demonstrated that G = G0⊕Gχc

, where G0

is the LSC of zero-mean H-valued random variables [2]. Consequently, πG = πG0 + πGχc

and

πG(ξ) = πG0(ξ− E(ξ)) + E(ξ). (6)

Note that the orthogonal complement of an LCS is also an LCS [2, Theorem 1.10].
Considering the set of integers, Z, a sequence of HSSO random variables, namely

ξξξ = {ξn, n ∈ Z}, is called an HSSO discrete time stochastic process. The time domain
of the stochastic process ξξξ,M(ξξξ), is defined to be the LCS generated by {ξn : n ∈ Z}.
Moreover, the LCS generated by {ξn : n ≤ t} defines the past of ξξξ up to time t, and
is denoted by M(ξξξ, t). Also, ∩tM(ξξξ, t) := M(ξξξ,−∞), which is a LCS, stands for the
distant past of ξξξ, see [2].

Definition. An H-valued stochastic process ξξξ is called deterministic or singular if
M(ξξξ,−∞) =M(ξξξ), otherwise, it is called nondeterministic. IfM(ξξξ,−∞) = {0}, where
0 is the zero of L2

H(Ω,F , P ), the process is named purely nondeterministic or regular.

This paper focuses on Hilbertian periodically correlated processes, which are defined
as follows.

Definition. An HSSO stochastic process ξξξ is periodically correlated (HPC-T) if there
exists a positive integer T such that

E(ξn) = E(ξn+T ), (7)

Cξn,ξm
:= C n,m

ξ = C n+T,m+T
ξ . (8)

The smallest T in (7) and (8) is called the period of the process ξξξ.

Note that, by setting T = 1, the results presented in this paper can be applied to
stationary processes.

Remark 2.1. Kallianpur and Mandrekar [7] applied the idea of unitary operators for defin-
ing stationary H-valued random processes. For this purpose, they applied the notation
L2(H) for the subspace of L2(Ω,F , P ), generated by{

〈ξn, h〉H ; ξn ∈ L2
H(Ω,F , P ), n ∈ Z, h ∈ H

}
.

Besides, they use L2(H, t) to denote the subspace of L2(Ω,F , P ), generated by{
〈ξn, h〉H ; ξn ∈ L2

H(Ω,F , P ), n ≤ t, h ∈ H
}
.
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Consequently, if ∩tL2(H, t) = {0}, where 0 is the zero of L2(H), they called an H-valued
process purely nondeterministic. They called the process deterministic if L2(H, t) =
= L2(H), for all t. Based on their approach, an HSSO stochastic process ξξξ is station-
ary if there exists an unitary operator Uξξξ : L2(H) → L2(H) such that 〈ξt+1, h〉H =
= Uξξξ〈ξt, h〉H , ∀h ∈ H. Although the idea of unitary operators can be extended to
periodically correlated processes, this paper will focus on L-closed subspaces. See [6]
for the application of unitary operators, when dealing with complex-valued periodically
correlated processes.

3. Wold decomposition

In infinite dimensional time series analysis, applying Wold decomposition to any sta-
tionary time series results in writing down the process as the sum of two infinite di-
mensional processes, one deterministic and one nondeterministic. The following theorem
represents the Wold decomposition for infinite dimensional periodically correlated pro-
cesses.

Theorem 3.1 (The Wold Decomposition of HPC − T Sequences). Any HPC − T
sequence ξt has a unique decomposition

ξt = ζt + ηt, (9)

in which M(ξξξ, t) = M(ζζζ, t) ⊕M(ηηη, t), ζt is an HPC − T deterministic process and ηt
is an HPC − T purely nondeterministic process.

Proof. Consider (6) and for simplicity of notation, let ξt, t ∈ Z, be a sequence of zero-
mean PC time series. As the first step, let us prove that M(ξξξ, t) = M(ζζζ, t) ⊕M(ηηη, t).
For each t ∈ Z, let ζt be the projection of ξt on M(ξξξ,−∞), denoted by
ζt := πM(ξξξ,−∞)ξt ∈ M(ξξξ,−∞), and ηt = ξt − ζt = ξt − πM(ξξξ,−∞)ξt ⊥ M(ξξξ,−∞).
Hence, M(ζζζ, t) ⊥ M(ηηη, t). For each t ∈ Z, ζt ∈ M(ξξξ,−∞) ⊆ M(ξξξ, t), and
ηt = ξt − ζt ∈M(ηηη, t) ⊆M(ξξξ, t). Hence, M(ζζζ, t)⊕M(ηηη, t) ⊆M(ξξξ, t). To complete the
proof, it is enough to demonstrate that M(ξξξ, t) ⊆ M(ζζζ, t) ⊕M(ηηη, t). For this purpose,
let w ∈ M(ξξξ, t). Define u := πM(ξξξ,−∞)w ∈ M(ζζζ, t) and v := w − u ∈ M(ηηη, t). Clearly,
w = u + v, which shows that M(ξξξ, t) ⊆M(ζζζ, t)⊕M(ηηη, t).

To indicate ζt is a deterministic process, it will be shown that M(ζζζ,−∞) = M(ζζζ),
or equivalently, M(ζζζ,−∞) =M(ζζζ, t), ∀t ∈ Z. In the first part of the proof, it is demon-
strated that, for each t, M(ζζζ, t) ⊆ M(ξξξ,−∞). The proof will be continued by showing
that M(ξξξ,−∞) ⊆M(ζζζ, t).

For fixed t, suppose that there is a nonzero u ∈M(ξξξ,−∞)	M(ζζζ, t). For each s ≤ t,
u ⊥ ζs. Moreover,considering the fact that ηs ⊥ M(ξξξ,−∞), we conclude that u ⊥ ηs.
Consequently, u ⊥ ξs = ζs + ηs, hence u ⊥ M(ξξξ, t), therefore, u ⊥ M(ξξξ,−∞). This
implies that u = 0, which is a contradiction. Hence,M(ξξξ,−∞) ⊆M(ζζζ, t), which proves
that ζt is a deterministic process. Moreover,M(ηηη,−∞) =M(ξξξ,−∞)	M(ζζζ,−∞). Since
ζt is a deterministic process, it is easy to demonstrate that M(ηηη,−∞) = {0} therefore,
ηt is a purely nondeterministic process.

The last part of the proof is devoted to the periodicity of ζt and ηt. As mentioned
previously, the process ξξξ is considered to have zero mean. Therefore, using the properties
of expectation and tensorial product and periodic behavior of ξξξ, stated in Section 2, it
can be shown that for all t ∈ Z:1

E(ζt) = E
(
πM(ξξξ,−∞)ξt

)
=

= πM(ξξξ,−∞)E(ξt) =

= 0.
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For x ∈ H, we have:

Ct,t′

ζ (x) = E(ζt ⊗ ζt′)(x) =

= E
(
πM(ξξξ,−∞)ξt ⊗ πM(ξξξ,−∞)ξt′

)
(x) =

= πM(ξξξ,−∞)E(ξt ⊗ ξt′)π
M(ξξξ,−∞)(x) =

= πM(ξξξ,−∞)Ct,t′

ξ πM(ξξξ,−∞)(x) =

= πM(ξξξ,−∞)Ct+T,t′+T
ξ πM(ξξξ,−∞)(x) =

= Ct+T,t′+T
ζ (x).

Similarly, it can be demonstrate that E(ηt) = E(ξt)− E(ζt) = 0. For all x ∈ H,

Ct,t′

η (x) = E(ξt − ζt ⊗ ξt′ − ζt′)(x) =

= E(ξt ⊗ ξt′)(x)− E(ξt ⊗ ζt′)(x)− E(ζt ⊗ ξt′)(x) + E(ζt ⊗ ζt′)(x) =

= E(ξt ⊗ ξt′)(x)− E(ξt ⊗ ξt′)π
M(ξξξ,−∞)(x)−

− πM(ξξξ,−∞)E(ξt ⊗ ξt′)(x) + E(ζt ⊗ ζt′)(x) =

= Ct,t′

ξ (x)− Ct,t′

ξ πM(ξξξ,−∞)(x)− πM(ξξξ,−∞)(x)Ct,t′

ξ + Ct,t′

ζ =

= Ct+T,t′+T
ξ (x)− Ct+T,t′+T

ξ πM(ξξξ,−∞)(x)−

− πM(ξξξ,−∞)Ct+T,t′+T
ξ (x) + Ct+T,t′+T

ζ =

= Ct+T,t′+T
η (x). �

3.1. Moving Average Representation for HPC − T Processes. As stated in the
previous section, any HPC − T process can be decomposed into a deterministic process
and a purely nondeterministic one. This section is devoted to present a moving average
representation for the purely nondeterministic part. In this case, the Wold decomposition
can be used for prediction problem in terms of moving average parameters and the
innovation process, see [12].

Consider the nondecreasing spacesM(ξξξ, t). If there exists some t0 whereM(ξξξ, t0 − 1)
is a proper subspace of M(ξξξ, t0), i.e., M(ξξξ, t0 − 1) ⊂M(ξξξ, t0), then innovation space of
the sequence ξt at time t is defined as:

I(ξξξ, t) =M(ξξξ, t)	M(ξξξ, t− 1) = {ξ ∈M(ξξξ, t) : ξ ⊥M(ξξξ, t− 1)}. (10)

Note that if such t0 does not exist, i.e., M(ξξξ, t) = M(ξξξ, t− 1), for all t, the process
ξξξ will be deterministic and M(ξξξ, t) = M(ξξξ,−∞). Equation (10) can be re-stated as
M(ξξξ, t) = I(ξξξ, t)⊕M(ξξξ, t− 1). More accurately,

M(ξξξ, t) = ⊕
∑
j≤t

I(ξξξ, j)⊕M(ξξξ,−∞). (11)

Moreover, I(ξξξ, t) ⊥ M(ξξξ,−∞), for every t ∈ Z, and, by the Wold decomposition, it
can be proved that I(ξξξ, t) =M(ηηη, t)	M(ηηη, t− 1), see [6]. Let dξξξ(t) stand for dim I(ξξξ, t).
Following the same steps as Hurd and Miamee [6], it can be illustrated that dξξξ(t) = 0 or
1 and dξξξ(t + T ) = dξξξ(t).

The block innovation at time t, IT (ξξξ, t), is as follows:

IT (ξξξ, t) :=M(ξξξ, t)	M(ξξξ, t− T ) =

= I(ξξξ, t)⊕ I(ξξξ, t− 1)⊕ · · · ⊕ I(ξξξ, t− T + 1). (12)
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The rank or dimension of the block innovation is the number of times in one period that
the innovation is not trivial, i. e.,

dTξξξ (t) :=

T−1∑
s=0

dξξξ(t− s). (13)

It can be concluded from the periodicity of dξξξ(t), i.e., dξξξ(t) = dξξξ(t + T ), that dTξξξ (t) is

constant with respect to t. The process ξt is called full rank if dTξξξ (t) = T.
If ξt is HPC − T , then the past of ηηη up to time t can be presented, in terms of an

orthogonal sum of innovation spaces, as:

M(ηηη, t) = I(ξξξ, t)⊕ I(ξξξ, t− 1)⊕ · · · = ⊕
∞∑
j=0

I(ξξξ, t− j),

or, equivalently, as M(ηηη, t) = ⊕
∑∞

j=0 IT (ξξξ, t− jT ). This formulation is applied to
present the moving average representation of ηt.

Let D+ stand for the time indices where ξt has positive innovation dimension, that is:

D+ = {t : dξξξ(t) > 0}. (14)

For periodic process ξt, the set D+ is periodic in the sense that if t ∈ D+, then
t + kT ∈ D+ for every k ∈ Z, see [6]. Moreover,

dTξξξ (t) = card
(
D+ ∩ {0, 1, · · · , T − 1}

)
.

This notation allows us to have the moving average representation even when ξt is not
of full rank, i. e., dTξξξ (t) < T.

The next theorem provides the moving average representation for a purely nondeter-
ministic HPC − T sequence. For this purpose, consider the following assumptions:
Assumption 1: There exists a periodic set of indices D+ with period T, and dT

ξ
(t) =

= card(D+ ∩ {0, 1, · · · , T − 1}).
Assumption 2: aj,t is a sequence of bounded linear operators such that∑

j≥0 t−j∈D+

‖aj,t‖20 <∞,

and aj,t+kT = aj,t for every j, k, t, with t− j ∈ D+.

Theorem 3.2 (Moving Average Representation of HPC − T Sequences). Let ξt be an
HSSO stochastic process. This process is a purely nondeterministic HPC − T sequence
of rank dT

ξ
(t) if and only if Assumption 1 holds and there exists a set of orthonormal

innovation processes, I = {ηm, m ∈ D+}, such that, for every t,

ξt =
∑

j≥0 t−j∈D+

aj,t(ηt−j), (15)

where aj,t satisfies Assumption 2.

Proof. If Part : Let ξt be given by (15). Since ηm’s are orthogonal and aj,t are square
summable, it can be concluded that ξt is a HSSO stochastic process. Based on the
properties of expectation and periodic structure of D+ and aj,t, it can easily be proved
that E(ξt) = E(ξt+T ). For t ≥ s, using the properties of Bochner integral and tensorial
product, we have:

C t,s
ξ = E(ξt ⊗ ξs) = E

 ∑
j≥0 t−j∈D+

aj,t(ηt−j)⊗
∑

j′≥0 s−j′∈D+

aj′,s(ηs−j′)

 =
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=
∑

j≥0 t−j∈D+

∑
j′≥0 s−j′∈D+

E(aj,t(ηt−j)⊗ aj′,s(ηs−j′)) =

=
∑

j≥0 t−j∈D+

∑
j′≥0 s−j′∈D+

aj,tE(ηt−j ⊗ ηs−j′)a
∗
j′,s =

=
∑

j≥0 t−j∈D+

∑
j′≥0 s−j′∈D+

aj,tC
t−j,s−j′
η a∗j′s =

=
∑

j≥0 t−j∈D+

aj,tCηa
∗
s−t+j,s =

=
∑

j≥0 t−j∈D+

aj,t+TCηa
∗
s+T−t−T+j,s+T =

= E(ξt+T ⊗ ξs+T ) = C t+T,s+T
ξ .

By orthogonality of ηm, we have:

E(ηt−j ⊗ ηs−j′) := C t−j,s−j′
η =

{
Cη, if t− j = s− j′,

0, if t− j 6= s− j′.

Therefore, ξt is HPC−T. Moreover,M(ξξξ, t) ⊂M(ηηη, t) and, consequently, ∩tM(ξξξ, t) ⊂
⊂ ∩tM(ηηη, t) = {0}, which demonstrates that ξt is a purely nondeterministic process. To
prove dTξξξ (t) = card(D+ ∩ {0, 1, · · · , T − 1}), note that, from (15) and for all 0 ≤ t ≤ T−1,

there exists card(D+ ∩ {0, 1, · · · , T − 1}) values of t for which ξt depends on ηt. For
other values of t, the process depends only on the past innovations, i. e., j > 0. More
precisely, for 0 ≤ t ≤ T − 1, ξt has card(D+ ∩ {0, 1, · · · , T − 1}) non-zero innovations,
which implies that ξt is of rank card(D+ ∩ {0, 1, · · · , T − 1}).

Only If Part : Suppose that ξt is purely nondeterministic HPC − T, and of rank
dTξξξ . As mentioned previously, the dimension of the innovation spaces I(ξξξ, p) is zero

or one and I(ξξξ, p) ⊥ I(ξξξ, q) for p 6= q. Let D+ = {t : dξξξ(t) = dim I(ξξξ, t) = 1}, and
ηp := ξp − πM(ξξξ,p−1)(ξp) be the unit element of I(ξξξ, p), p ∈ D+. Based on (11) and the
definition of LCS, any X ∈M(ξξξ, t) can be presented in terms of ηp, p ∈ D+, as

X =
∑

j≥0 t−j∈D+

`j(ηt−j),

where `j ∈ L and, since ξt ∈M(ξξξ, t), we have

ξt =
∑

j≥0 t−j∈D+

aj,t(ηt−j).

To determine aj,t, note that for each t, ξt is a periodic HSSO process, i.e., E‖ξt‖2 <∞,

which results in
∑

j≥0 t−j∈D+‖aj,t‖20 < ∞. Also, since the process ξt demonstrates a

periodic behavior in the mean and covariance operator and D+ has a periodic structure,
it can be deduced that aj,t is a set of periodic operators, i.e., aj,t+kT = aj,t. �

The introduced moving average presentation can be applied in prediction theory in
time series analysis. For more information on prediction theory see [12]. The follow-
ing example demonstrates moving average representation for an H-valued periodically
correlated autoregressive process.

Example (Moving Average Representation for PCARH(1) Processes). An HSSO se-
quence ξξξ = {ξt, t ∈ Z} is called an H-valued periodically correlated autoregressive pro-
cess of order 1 with period T, or PCARH(1) in abbreviation, if it satisfies

ξt = φtξt−1 + ηt, (16)
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where {ηt, t ∈ Z} is a collection of orthogonal HSSO random variables. Besides, φφφ =
= {φ0,φ1, · · · ,φT−1} is a T -periodic sequence in L, i. e., φt = φt+T , t ∈ Z, see [17].
This process is called causal if it does not depend on the future values of ηt, i. e., if
M(ξξξ, t) ⊂M(ηηη, t).

If ξt is a causal solution to PCARH(1), then

ξt =

∞∑
j=0

aj,tηt−j , (17)

where a0,t = I, aj,t = φtφt−1 · · ·φt−j+1, j > 0, and
∑

j≥0‖aj,t‖
2
0 <∞. More precisely,

ξnT+i =

∞∑
k=0

T−1∑
l=0

[aT,nT+i]
k
al,nT+iη(n−k)Ti−l. (18)
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ÐÎÇÊËÀÄ ÓÎËÄÀ ÃIËÜÁÅÐÒÎÂÈÕ ÏÅÐIÎÄÈ×ÍÎ ÊÎÐÅËÜÎÂÀÍÈÕ

ÏÐÎÖÅÑIÂ

À. ÇÀÌÀÍI, Ç. ÑÀÄÆÀÄÍIÀ, Ì. ÕÀØÅÌI

Àíîòàöiÿ. Ðîçêëàä Óîëäà ñòàöiîíàðíèõ ïðîöåñiâ øèðîêî çàñòîñîâó¹òüñÿ ó ïðîãíîçóâàííi ÷àñîâèõ
ðÿäiâ i äà¹ öiêàâå ðîçóìiííÿ ñòðóêòóðè ñòàöiîíàðíèõ âèïàäêîâèõ ïðîöåñiâ. Ó 1971 ðîöi Êàëëiàíïóð
i Ìàíäðåêàð, âèêîðèñòîâóþ÷è ïîíÿòòÿ ðîçêëàäó îäèíèöi òà óíiòàðíèõ îïåðàòîðiâ, ïðåäñòàâèëè
ðîçêëàä Óîëäà äëÿ ñëàáêî ñòàöiîíàðíèõ âèïàäêîâèõ ïðîöåñiâ çi çíà÷åííÿìè â íåñêií÷åííîâèìiðíèõ
ãiëüáåðòîâèõ ïðîñòîðàõ. Öÿ ñòàòòÿ ìà¹ íà ìåòi ðîçøèðèòè iäåþ ðîçêëàäó Óîëäà äî ãiëüáåðòîâèõ
ïåðiîäè÷íî êîðåëüîâàíèõ ïðîöåñiâ, çàñòîñîâóþ÷è ïîíÿòòÿ L-çàìêíåíèõ ïiäïðîñòîðiâ.


