2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya Imovirnostei ta Matematychna Statystyka)



On extreme values of some regenerative processes

O. K. Zakusylo, I. K. Matsak

Download PDF

Abstract: A general limit theorem for extremes of regenerative processes is established. Applications to birth and death processes and processes specifying queue length are given.

Keywords: Extremes, regenerative processes, birth and death processes, queueing theory

Bibliography:
1. B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, 2nd ed., Mathematical Modeling, vol. 5, Birkhauser, Boston, 1989.
2. S. Karlin, A rst course in stochastic processes, Academic Press, New York-London, 1966.
3. V. V. Anisimov, O. K. Zakusylo, V. S. Donchenko, Elements of the queueing theory and asymptotic analysis of systems, Vyshcha shkola, Kiev, 1987. (Russian)
4. J.W. Cohen, Extreme values distribution for the M/G/1 and G/M/1 queueing systems, Ann.Inst. H. Poincare., Sect.B, 4 (1968), 83-98.
5. C.W. Anderson, Extreme value theory for a class of discrete distribution with application to some stochastic processes, J. Appl. Prob., 7 (1970), 99-113.
6. D. L. Iglehart, Extreme values in the GI/G/1 gueue, Ann. Math. Statist., 43 (1972), 627-635.
7. R. F. Serfozo, Extreme values of birdh and death processes and queues, Stochastic Process. Appl., 27 (1988), 291-306.
8. S. Asmussen, Extreme values theory for queues via cycle maxima, Extremes, 1 (1998), 137-168.
9. J. Galambos, The asymptotic theory of extreme order statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978.
10. M. R. Leadbetter, G. Lindgren, H. Rootzen, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983.
11. D. Cox, W. Smith, Renewal theory, Sovetskoye Radio, Moscow, 1967. (Russian)
12. I. I. Gikhman, A. V. Skorokhod, M. I. Yadrenko, Theory of probability and mathematical statistics, Vyshcha shkola, Kiev, 1988. (Russian)
13. I. K. Matsak, A lemma for random sums and its applications, Ukrain. Mat. Zh. (2017), in press. (Ukrainian)
14. E. Yu. Barzilovich, Yu. K. Belyaev, V. A. Kashtanov, I. N. Kovalenko, A. D. Solovyev, I. A. Ushakov, Problems of the mathematical theory of reliability (B. V. Gnedenko, ed.), Radio i Svyaz,Moscow, 1983. (Russian)
15. B. V. Gnedenko, Yu. K. Belyayev, A. D. Solovyev, Mathematical methods of reliability theory, Academic Press, New York-London, 1969.
16. W. Feller, An introduction to probability theory and its applications, vol. 2, 2nd ed., John Wiley & Sons, New York-London-Sydney, 1971.
17. B. V. Dovga, I. K. Matsak, On a redundant system with renewals, Theory Probab. Math. Statist., 94 (2017), 63-76.
18. S. Karlin, J. McGregor, The classication of birth and death processes, Trans. Amer. Math. Soc., 86 (1957), 366-400.
19. L. Takacs, Some probability questions in the theory of telephone trac, Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl., 8 (1958), 151-210. (Hungarian)