2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editors Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya imovirnostey ta matematychna statystyka)



An application of the Malliavin calculus for calculating the precise and approximate prices of options with stochastic volatility

S. V. Kuchuk-Yatsenko, Yu. S. Mishura, Ye. Yu. Munchak

Download PDF

Abstract: The article is devoted to models of financial markets with stochastic volatility, which is defined by a functional of Ornstein-Uhlenbeck process or CoxIngersoll-Ross process. We study the question of exact price of European option. The form of the density function of the random variable, which expresses the average of the volatility over time to maturity is established using Malliavin calculus.The result allows calculate the price of the option with respect to minimum martingale measure when the Wiener process driving the evolution of asset price and the Wiener process, which defines volatility, are uncorrelated.

Keywords: Black-Scholes model, stochastic volatility, option pricing, Malliavin calculus.

Bibliography:
1.Alos, E. and Ewald, Ch-O.: A Note on the Malliavin Differentiability of the Heston Volatility, SSRN Electronic Journal, 09/2005, 2005, DOI: 10.2139/ssrn.847645.
2. Barndorff-Nielsen, O. E., and Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 2001, pp. 167—241, doi: 10.1111/1467-9868.00282
3. Cox, J.C., Ingersoll, J.E. and Ross, S.A.: A Theory of the Term Structure of Interest Rates, Econometrica, 53, 1985, no. 2, pp. 385–407.
4. Delbaen, F., and Schachermayer, W.: The Mathematics of Arbitrage, Springer Finance, 2006, New York.
5. Dereich, S., Neuenkirch, A. and Szpruch, L.: An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468, 2012, pp. 1105–1115.
6. D’Ippoliti, F., Moretto, E., Pasquali, S. and Trivellato, B.: Mathematical and Statistical Methods for Actuarial Sciences and Finance. Exact and approximated option pricing in a stochastic volatility jump-diffusion model, Springer Milan, Milano, 2009, pp. 133–142, doi: 10.1007/978-88-470-1481-7-14.
7. Garman, M.: A general theory of asset valuation under diffusion state processes, Working Paper, Univ. of California, Berkeley, 1976.
8. Goard, J.: Exact and approximate solutions for options with time-dependent stochastic volatility, Applied Mathematical Modelling, 38, 2014, pp. 2771–2780.
9. Heston, S.: The review of financial studies, J. Finance., 6(2), 1993, 327-343.
10. Frey, R.: The Pricing of Options on Assets with Stochastic Volatilities, J. Finance, 42, 1987, pp. 281–300.
11. Ikeda, N., and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, NorthHolland Mathematical Library, Volume 24, 1986.
12. Fournie, E., Lasry, J.-M and Lebuchoux, J and Lions P.-L, and Touzi, T.: Applications of Malliavin calculus to Monte-Carlo methods in finance, Fin. and Stoch., 3, 1999, pp. 391—412.
13. Kuchuk-Iatsenko, S. and Mishura, Y.: Pricing the European call option in the model with stochastic volatility driven by Ornstein-Uhlenbeck process. Exact formulas, Modern Stoch. Theory Appl., 2(3), 2015, pp. 233–249.
14. Kuchuk-Iatsenko, S., and Mishura, Y.: Pricing the European call option in the model with stochastic volatility driven by Ornstein-Uhlenbeck process. Simulation, Modern Stoch. Theory Appl., 2(4), 2015, pp. 355–369.
15. Leon, J.A. and Nualart, D.: Stochastic evolution equations with random generators, The Annals of Probability, 26(1), 1998, pp. 149–186.
16. Yu. S. Mishura and E. Yu. Munchak. Rate of convergence of option prices by using the method of pseudomoments. Theor. Probability and Math. Statist. 92 (2016), 117-133
17. Yu. S. Mishura and E. Yu. Munchak. Rate of convergence of option prices for approximations of the geometric Ornstein-Ohlenbeck process by bernioulli jumps of prices on assets. Theor. Probability and Math. Statist. 93 (2016)
18. Mishura, Yu., Rizhniak, G., and Zubchenko, V.: European call option issued on a bond governed by a geometric or a fractional geometric Ornstein-Uhlenbeck process, Modern Stoch. Theory Appl., 1(1), 2014, pp. 95–108.
19. Nicolato, E. and Venardos, E.: Option Pricing in Stochastic Volatility Models of the OrnsteinUhlenbeck type, Mathematical Finance, 13, 2003, pp. 445-–466, doi: 10.1111/1467-9965.t01-1-00175
20. Nualart, D.: The Malliavin Calculus and Related Topics, Probability and Its Applications, Second edition, Springer-Verlag Berlin Heidelberg, 2006.
21. Nualart, D. and Pardoux, E.: Stochastic Calculus with Anticipating Integrands, Probab. Th. Rel. Fields, 78, 1988, no. 4, pp. 535–581.
22. Di Nunno, G. and Oksendal, B. and Proske, F.: Malliavin Calculus for L?evy Processes with Applications to Finance, Universitext, Springer Science & Business Media, 2008.
23. Ouknine, Y. Fubini-type theorem for anticipating integrals, Random Oper. Stoch. Equ., 4 (1996), no. 4, pp. 351–354.
24. Ocone, D.L. and Karatzas, I.: A generalized Clark representation formula, with application to optimal portfolios, Stochastics and Stochastics Reports, 34, 1991, pp. 187–220.
25. Perell?o, J. and Sircar, R. and Masoliver, J.: Option Pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model, J. Stat. Mech, 1, 2008, P06010.
26. Sanz-Sole, M.: Malliavin Calculus with Applications to Stochastic Partial Differential Equations, EPFL Press, Lausanne, 2005. OPTION PRICIN
27. Shephard, N. and Andersen, T.G.: Handbook of Financial Time Series. Chapter: Stochastic Volatility: Origins and Overview, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 233–254, doi: 10.1007/978-3-540-71297-8-10.
28. Shiryaev, A. N.: Essentials of stochastic finance: facts, models, theory, World scientific, 1999.
29. Shreve, S.E.: Stochastic Calculus for Finance II. Continuous-Time Models, Springer Finance Textbooks, Springer-Verlag New York, 2004.
30. Stein, E.M. and Stein, J.C. Stock Price Distributions with Stochastic Volatility: An Analytic Approach, The Review of Financial Studies, Vol. 4(4), 1991, pp. 727–752.
31. Wiggins J.: Option values under stochastic volatility: Theory and empirical estimates, Journal of Financial Economics, 19, 1987, pp. 351–372.
32. Wong, B. and Heyde, C.C.: On changes of measure in stochastic volatility models, J. Appl. Math. Stochastic Anal., Vol. 2006, 2006, pp. 1–13, Article ID 18130.