2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editors Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya imovirnostey ta matematychna statystyka)



Distributions of overshoots for almost continuous stochastic processes defined on a Markov chain

M. S. Gerych

Download PDF

Abstract: In this paper we study the distributions of overshoots for the almost semi-continuous processes defined on a Markov chain. For these processes, we get the limit distributions of overshoots over the infinitely far and zero levels.

Keywords: almost semi-continuous process defined on Markov chain, overshoots functionals ,distributions of overshoots over the infinitely far and zero levels

Bibliography:
1. Ezhov I.I., Skorokhod A.V. Markov processes, homogeneous by second component // Probability teor. and its appl. – 1969. – 14, № 1. – P. 3-14, № 4 – P. 679-692.
2. Arjas E. On a fundamental identity in the theory of semi-Markov processes // Advances in Applied Probability. – 1972. Vol. 4, № 2, P. 258-270.
3. Asmussen S., Albrecher H. Ruin Probabilities. – Hackensack: World Scientific Publishing Company,2010. – p. 621.
4. Husak D.V. Boundary problems for processes with independent increments on finite Markov chain and for semi-Markov processes. – Kiev: Institute of Mathematics NAN Ukrain, 1998. – p. 320.
5. Karnaukh Ye.V. Boundary value problems for one class processes on Markov chain: Thesis abstract of PhD Ph.-mat. sc. – Kiev, 2007, – p. 18.
6. Lotov V.I., Orlova N.G. Factorization Representations in the Boundary Crossing Problems for Random Walks on a Markov Chain// Sib. Math. Journal. – 2005. – T. 46, № 4. – P. 833-840.
7. Herych, M.S., Husak(Gusak) D.V.On the Moment-Generating Functions of Extrema and Their Complements for Almost Semicontinuous Integer-Valued Poisson Processes on Markov Chains //Ukr. Math. Jorn.,– 2015. – Vol. 67, № 8, P. 1034–1049.
8. Husak D.V., Tureniyazova A.I. Distribution of some boundary functionals for lattice Poisson processes on Markov chain// Asymptotic methods in stochastic models study: Col.sc.p.– Institute of Mathematics NAN Ukrain, – 1967.– P. 21-27.
9. Husak D.V. Processes with stationary independent increments in the Risk theory. – Kiev: Institute of Mathematics NAN Ukrain, 2011. – p. 544.
10. Herych M. S. Refinements of basic faktorizational identity for almost semi-continuous lattice processes on Markov chain// Carpathian mathematical publish papers. – 2012. – Vol. 4, №2. – P.229-240.
11. Herych M. S. Moment generating functions of extremums and their complemets for upper semi-continuous lattice Poison process on Markov chain// Bulletin of Taras Shevchenko National University of Kyiv Series Physics- Mathematics . – 2013. – №1. – P. 21-27.