2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editors Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya imovirnostey ta matematychna statystyka)



Upper bounds for supremums of the norms of the deviation between a homogeneous isotropic random field and its model

N. V. Troshki

Download PDF

Abstract: In this paper we obtained the estimates in the supremum norm of the deviations of a homogeneous and isotropic random field from the constructed model of this field.

Keywords: Gaussian random fields, homogeneous and isotropic fields, modeling, accuracy and reliability.

Bibliography:
1. V. Buldygin, Yu. Kozachenko Metric characterization of random variables and random processes,Amer. Math. Soc., Providence, RI, 2000.
2. R. Guiliano Antonini, Yu. Kozachenko, T. Nikitina Spaces of ?-subgaussian random variables,Memorie di Matematica e Applicazioni, XXVII (1), (2003), 95–124.
3. Yu. V. Kozachenko, L. F. Kozachenko On the accuracy of modeling of Gaussian random processes in L2(0, T), Calcul. and applied. mathematics, No 75, (1991), 108–115. (Russian)
4. Yu. V. Kozachenko, A. O. Pashko, The accuracy of simulation of random processes in the norms of Orlicz spaces, Theory Probab. Math. Stat., No. 58, (1988), 45-60.
5. Yu. V. Kozachenko, A. O. Pashko, and I. V. Rozora, Modeling of Random Processes and Fields,“Zadruga”, Kyiv, 2007. (Ukrainian)
6. Yu. V. Kozachenko, O. O. Pogoriliak, A. M. Tegza Modelling of Gaussian random processes and processes Cox, Karpaty, Uzhgorod, 2012. (Ukrainian)
7. Yu. Kozachenko, A. Slyvka-Tylyshchak The Cauchy Problem for the Heat Equation with a Random Right Part from the Space Sub?(?), Applied Mathematics., Vol. 5, (2014), 2318–2333.
8. Yu. V. Kozachenko, N. V. Troshki Accuracy and reliability of a model of Gaussian random process in C(T) space, International Journal of Statistics and Management System, 10, (2015), No 1-2, 1–15.
9. G. A. Mikhailov, Modeling of random processes and fields on the basis of point flows Palma, Dokl. AN SSSR, 262, (1982), No 3, 531-535.(Russian)
10. G. A. Mikhailov Some questions of the theory and Monte Carlo methods, “Nauka”, Novosibirsk,1974. (Russian)
11. G. A. Mikhailov, K. K. Sabelfeld Numerical simulation of impurity diffusion in stochastic velocity fields, Izv. AN SSSR, T.16, No 3, (1980), 229-235. (Russian)
12. G. A. Mikhailov Approximate models of random processes and fields, Jour. Calculated. Mathematics and Math. physics,T.23, No 3, (1983), 558-566. (Russian)
13. G. A. Mikhailov, A. V. Voytishek The numerical statistical modeling, Ak., Moscow, 2006. (Ukrainian)
14. N. V. Troshki Accuracy and reliability of a model for a Gaussian homogeneous and isotropic random field in the space Lp(T), p ? 1 Theory Probab. Math. Stat.. – 2015. – No 90. – Pp. 161–176.
15. N. Troshki Construction models of Gaussian random processes with a given accuracy and reliability in Lp(T), p ? 1, Journal of Classical Analysis, 3, (2013), No 2,157–165.
16. Z. О. Vyzhva On Aprocsimation of 3-D Isotropic Random Fields on the Sphere and Statistical Simulation, Theory of Stochastic Processes, 3, (1997), No3-4, 463-467.
17. M. I. Yadrenko Spektral theory of random fields, Vischa Shkola, Kiev, 1980; English transl., Optimization Software, Publications Division, New York, 1983.
18. M. I. Yadrenko, A. K. Rakhimov, Statistical simulation of a homogeneous isotropic random field on the plane and estimations of simulation errors. (English. Russian original) Theory Probab. Math.Stat. 49, 177-181 (1994); translation from Teor. Jmovirn. Mat. Stat. 49, 245-251 (1993).