2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya Imovirnostei ta Matematychna Statystyka)



Estimation of parameters of a mixture of two symmetric distributions from a biased sample

T. Gorbach

Download PDF

Abstract: We consider a biased sample from a mixture of two symmetric distributions that differ by a shift parameter. The method of moments and the generalized estimating equations method are used to estimate unknown parameters. Adaptive estimators are constructed by using the estimators of optimal estimating functions and those obtained by the method of moments. The asymptotic behavior of GEE-estimators and adaptive estimators is investigated.

Keywords: Biased sample, mixture of two symmetric distributions, generalized estimating equations, adaptive estimators

Bibliography:
1. D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis of Finite Mixture Distribution, Wiley, New York, 1985.
2. G. J. McLachlan and D. Peel, Finite Mixture Models, Wiley-Interscience, 2000.
3. R. E. Mań≠boroda, Estimation of mean positions and concentrations from observations of a two-component mixture of symmetric distributions, Teor. Imovir. Matem. Statist. 78 (2008), 133-141; English transl. in Theor. Probability and Math. Statist. 78 (2009), 147-156.
4. R. E. Mań≠boroda and O. Sugakova, Estimate for Euclidean parameters of a mixture of two symmetric distributions, Ukr. Matem. Zh. 62 (2010), no. 7, 945-953; English transl. in Ukrain. Math. J. 62 (2010), no. 7, 1098-1108.
5. O. Sugakova, Adaptive estimators for parameters of a mixture of two symmetric distributions, Teor. Imovir. Matem. Statist. 82 (2010), 146-155; English transl. in Theor. Probability and Math. Statist. 82 (2011), 149-159.
6. D. R. Hunter, S. Wang, and T. R. Hettmansperger, Inference for mixtures of symmetric distributions, Ann. Statist. 35 (2007), 224-251.
7. J. Shao, Mathematical Statistics, Springer-Verlag, New York, 1998.
8. S. L. Lohr, Sampling: Design and Analysis, Duxbury Press, 1999.
9. O. I. Vasylyk and T. O. Yakovenko, Lectures in the Theory of Sampling Methods, Kyiv University Press, Kyiv, 2010. (Ukrainian)
10. M. V. Kartashov, Probability, Processes, Statistics, Kyiv University Press, Kyiv, 2007. (Ukrainian)