2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya Imovirnostei ta Matematychna Statystyka)



Convergence of stochastic integrals to a continuous local martingale with conditionally independent increments

Andriy Yurachkivsky

Download PDF

Abstract: For each T>0, let a tensor-valued stochastic process Y_T be defined by Y_T(t)=∫_0^tDZ_T(s)⊗ϑ_T(s), where Z_T is an R^d-valued locally square integrable martingale with respect to some filtration 𝔽_T and where ϑ_T is an R^d-valued 𝔽_T-predictable stochastic process such that ∫_0^t|ϑ_T(s)|^2Dtr(s)<∞ for all t. In this paper, conditions are found for the convergence (Y_T,)→(Y,Y), where Y is a continuous local martingale with conditionally independent increments given .

Keywords: Martingale, convergence, tensor

Bibliography:
1. R. Sh. Liptser and A. N. Shiryaev, Theory of Martingales, ''Nauka'', Moscow, 1986; English transl., Kluwer Academic, Dordrecht, 1989.
2. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer Verlag, Berlin, 1987.
3. A. Touati, On the functional convergence in distribution of sequences of semimartingales to a mixture of Brownian motions, Teor. Veroyatnost. Primenen. 36 (1991), no. 4, 744-763; English transl. in Theory Probab. Appl. 36 (1991), no. 4, 752-771.
4. A. Yurachkivsky, Convergence of locally square integrable martingales to a continuous local martingale, J. Probab. Statist. 2011 (2011), Article ID 580292.
5. B. L. van der Waerden, Algebra, vol. I, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
6. I. M. Gel'fand, Lectures on Linear Algebra, ''Nauka'', Moscow, 1971; English transl., Dover Publications, New York, 1989.
7. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and their Applications, ''Naukova dumka'', Kiev, 1982. (Russian)