2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya Imovirnostei ta Matematychna Statystyka)



Accuracy and reliability of a model for a Gaussian homogeneous and isotropic random field in the space Lp(T), p≥1

N. V. Troshki

Download PDF

Abstract: A model is constructed for a Gaussian homogeneous isotropic random field that approximates it with a given accuracy and reliability in the space Lp(T), p≥1. The theory of the spaces Sub(Ω) is used for studying such a model.

Keywords: Gaussian random fields, homogeneous and isotropic fields, models of random fields, accuracy and reliability

Bibliography:
1. S. M. Ermakov and G. A. Mikhaĭlov, A Course in Statistical Modeling, ''Nauka'', Moscow, 1982. (Russian)
2. V. A. Ogorodnikov and S. M. Prigarin, Numerical Modeling of Random Processes and Fields: Algorithms and Applications, VSP, Utrecht, 1996.
3. Yu. Kozachenko, T. Sottinen, and O. Vasylyk, Simulation of weakly self-similar stationary increment Sub_φ(Ω)-processes: a series expansion approach, Methodology and Computing in Applied Probability 7 (2005), no. 3, 379-400.
4. K. K. Sabelfeld and O. A. Kurbanmuradov, Numerical statistical model of classical incompressible isotropic turbulence, Soviet Journal of Numerical Analysis and Mathematical Modeling 5 (1990), 251-263.
5. Yu. V. Kozachenko, A. O. Pashko, and I. V. Rozora, Modeling of Random Processes and Fields, ''Zadruga'', Kyiv, 2007. (Ukrainian)
6. A. M. Tegza and N. V. Fedoryanych, Accuracy and reliability of a model of a Gaussian homogeneous and isotropic random field in the space C(T) with a bounded spectrum, Naukovyi Visnyk Uzhgorod University 22 (2011), no. 2, 142-147. (Ukrainian)
7. Yu. Kozachenko and I. Rozora, Simulation of Gaussian stochastic processes, Random Oper. Stoch. Equ. 11 (2003), no. 3, 275-296.
8. Yu. V. Kozachenko, I. V. Rozora, and Ye. V. Turchyn, On an expansion of random processes in series, Random Oper. Stoch. Equ. 15 (2007), no. 1, 15-33.
9. Yu. V. Kozachenko and A. M. Tegza, Application of the theory of Sub_φ(Ω) spaces of random variables for determining the accuracy of the modeling of stationary Gaussian processes, Teor. Imovir. Mat. Stat. 67 (2002), 71-87; English transl. in Theory Probab. Math. Statist. 67 (2003), 79-96.
10. N. V. Troshki, Construction of models of Gaussian random fields with a given reliability and accuracy in Lp(T), p≥1, Appl. Stat. Actuarial and Finance Math. (2013), no. 1-2, 149-156. (Ukrainian)
11. Yu. V. Kozachenko and O. O. Pogoriliak, Simulation of Cox processes driven by random Gaussian field, Methodology and Computing Appl. Probab. 13 (2011), no. 3, 511-521.
12. Yu. V. Kozachenko and O. M. Moklyachuk, Stochastic processes in the spaces D_{V,W}, Teor. Imovir. Mat. Stat. 82 (2010), 56-66; English transl. in Theory Probab. Math. Statist. 82 (2011), 43-56.
13. Yu. V. Kozachenko and O. M. Moklyachuk, Sample continuity and modeling of stochastic processes from the spaces D_{V,W}, Teor. Imovir. Mat. Stat. 83 (2010), 80-91; English transl. in Theory Probab. Math. Statist. 83 (2011), 95-110.
14. Yu. V. Kozachenko and Yu. Yu. Mlavets', The Banach spaces Fψ(Ω) of random variables, Teor. Imovir. Mat. Stat. 86 (2012), 92-107; English transl. in Theory Probab. Math. Statist. 86 (2013), 105-121.
15. V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, ''TViMS'', Kyiv, 1998; English transl., American Mathematical Society, Providence, RI, 2000.
16. M. I. Yadrenko, Spectral Theory of Random Fields, ''Vyshcha shkola'', Kiev, 1980; English transl., Optimization Software, Inc., Publications Division, New York-Heidelberg-Berlin, 1983.
17. H. Bateman and A. Erdelyi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York-Toronto-London, 1953.
18. Yu. V. Kozachenko and O. E. Kamenshchikova, Approximation of SSub_φ(Ω) stochastic processes in the space Lp(T), Teor. Imovir. Mat. Stat. 79 (2008), 73-78; English transl. in Theory Probab. Math. Statist. 79 (2009), 83-88.