2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process

Theory of Probability and Mathematical Statistics
(Teoriya Imovirnostei ta Matematychna Statystyka)



Approximation of a Wiener process by integrals with respect to the fractional Brownian motion of power functions of a given exponent

O. L. Banna, Yu. S. Mishura, S. V. Shklyar

Download PDF

Abstract: The best uniform approximation of a Wiener process by integrals of the form ∫_{0}^{t}f(s)dB_{s}^{H} is established in the space L∞([0,T];L_2(Ω)), where {B_{t}^{H}, t\in[0,T]} is the fractional Brownian motion with the Hurst index H and f(s)=k•s^{α}, s\in[0,T], for k>0 and $ α=H-1/2.

Keywords: Wiener process, fractional Brownian motion, integral with respect to the fractional Brownian motion, an approximation in a class of functions

Bibliography:
1. T. O. Androshchuk, Approximation of a stochastic integral with respect to fractional Brownian motion by integrals with respect to absolutely continuous processes, Teor. Imovirnost. Matem. Statist. 73 (2005), 17-26; English transl. in Theor. Probability and Math. Statist. 73 (2006), 19-29.
2. O. L. Banna and Yu. S. Mishura, The simplest martingales for the approximation of the fractional Brownian motion, Visnyk Kyiv National Taras Shevchenko University. Mathematics and Mechanics 19 (2008), 38-43. (Ukrainian)
3. O. L. Banna and Yu. S. Mishura, A bound for the distance between fractional Brownian motion and the space of Gaussian martingales on an interval, Teor. Imovirnost. Matem. Statist. 83 (2010), 12-21; English transl. in Theor. Probability and Math. Statist. 83 (2011), 13-25.
4. V. V. Doroshenko, Yu. S. Mishura, and O. L. Banna, The distance between fractional Brownian motion and the subspace of martingales with similar'' kernels, Teor. Imovirnost. Matem. Statist. 87 (2012), 38-45; English transl. in Theor. Probability and Math. Statist. 87 (2013), 41-49.
5. Yu. S. Mishura, O. L. Banna, and V. V. Doroshenko, The distance between the fractional Brownian motion and the subspace of Gaussian martingales, Visnyk Kyiv National Taras Shevchenko University. Mathematics and Mechanics 1 (2013), 53-60. (Ukrainian)
6. Yu. S. Mishura and O. L. Banna, Approximation of fractional Brownian motion by Wiener integrals, Teor. Imovirnost. Matem. Statist. 79 (2008), 106-115; English transl. in Theor. Probability and Math. Statist. 79 (2009), 107-116.
7. T. Androshchuk and Yu. S. Mishura, Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics, Stochastics 78 (2006), 281-300.
8. O. Banna and Y. S. Mishura, Approximation of fractional Brownian motion with associated Hurst index separated from 1 by stochastic integrals of linear power functions, Theory Stoch. Process. 14(30) (2008), no. 3-4, 1-16.
9. A. Le Breton, Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion, Stat. Probab. Lett. 38 (1998), 263-274.
10. Yu. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., vol. 1929, Springer, Berlin, 2008.
11. I. Norros, E. Valkeila, and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5(4) (1999), 571-587.
12. S. Shklyar, G. Shevchenko, Yu. Mishura, V. Doroshenko, and O. Banna, Approximation of fractional Brownian motion by martingales, Methodol. Comput. Appl. Probab. 16 (2014), no. 3, 539-560.
13. T. H. Thao, A note on fractional Brownian motion, Vietnam J. Math. 31 (2003), no. 3, 255-260.